

NOP - An international organic chemistry lab course for sustainability

2nd International Green and Sustainable Chemistry Meeting

Hotel Washington

19-24 June 2005

Johannes Ranke, Reinhold Stoermann, Muefit Bahadir, Dieter Lenoir, Pietro Tundo,

Burkhard Koenig

 A common project of 6 German Universities from 2000 - 2003

- A common project of 6 German Universities from 2000 - 2003
- Selection of experiments

- A common project of 6 German Universities from 2000 - 2003
- Selection of experiments
- Adaption, testing and evaluation

- A common project of 6 German Universities from 2000 - 2003
- Selection of experiments
- Adaption, testing and evaluation
- Background information

- A common project of 6 German Universities from 2000 - 2003
- Selection of experiments
- Adaption, testing and evaluation
- Background information
- Website development

- A common project of 6 German Universities from 2000 - 2003
- Selection of experiments
- Adaption, testing and evaluation
- Background information
- Website development
- ... and then go international!

Uni Bremen Prof. B. Jastorff, Frau A. Müller, Dr. J. Ranke, Dr. R. Stoermann und Frau C. Doose (v.l.n.r.)

TU Braunschweig Prof. M. Bahadir, Frau A. Nijakowski, Prof. H. Hopf und Dr. R. Vogt (v.l.n.r.)

Uni Jena Prof. B. Kreisel, Dr. A. Diehlmann Prof. B. Ondruschka, Dr. M. Nüchter, (v.l.n.r.)

Uni Oldenburg Frau Dr. U. Biermann, Frau C. Ohmstede, Prof. J. Metzger und Frau J. Reimer

TU München Prof. D. Lenoir, Prof. H. Parlar und Dr. C. Wattenbach (v.l.n.r.)

> Uni Regensburg Frau Dr. B. Krelle, Prof. B. König und Frau Dr. C. Braig (v.l.n.r.)

Deutsche Bundesstiftung Umwelt Dr. J.-P. Lay

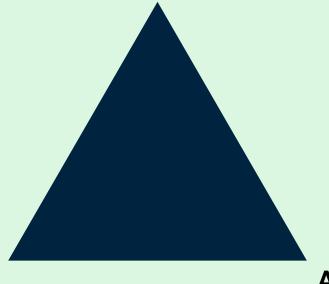
Dr. F. Zecchini Prof. A. Albini Prof. A. Citteno Prof. S. Auricchio Prof. P. Tundo

• N stands for Nachhaltigkeit (sustainability)

- N stands for Nachhaltigkeit (sustainability)
- O stands for Organic chemistry

NOP

- N stands for Nachhaltigkeit (sustainability)
- O stands for Organic chemistry
- P stands for Praktikum (lab course)

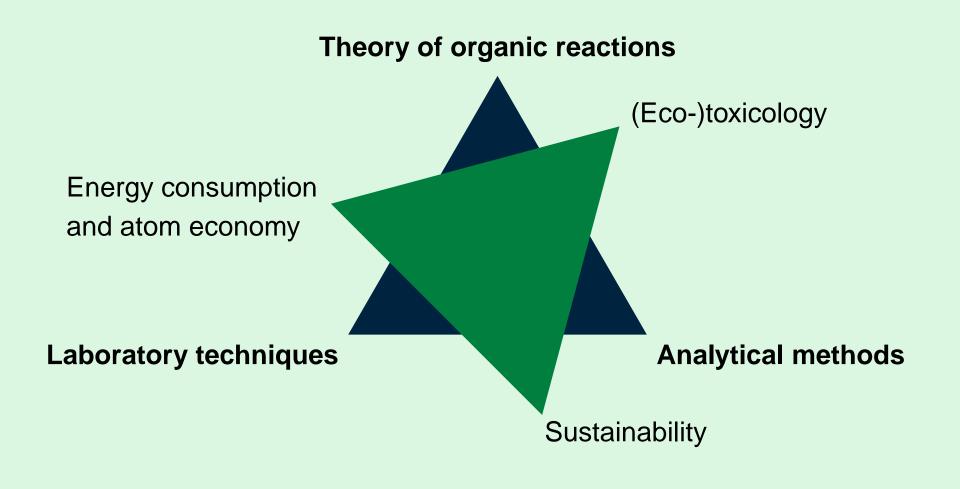


Concept

Theory of organic reactions

Laboratory techniques

Analytical methods



Concept

Elements of the NOP

Experimental instructions

Elements of the NOP

- Experimental instructions
- Information on evaluation of substances and reactions

Elements of the NOP

- Experimental instructions
- Information on evaluation of substances and reactions
- Background articles

Coverage of laboratory techniques

- Coverage of laboratory techniques
- Coverage of reaction types

- Coverage of laboratory techniques
- Coverage of reaction types
- Alternative methods

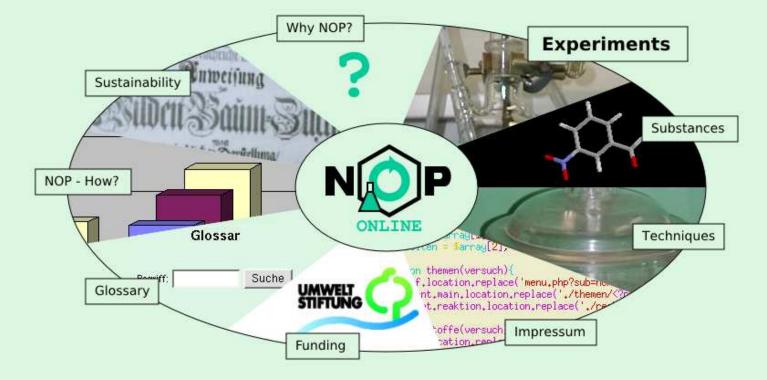
- Coverage of laboratory techniques
- Coverage of reaction types
- Alternative methods
- High stoichiometric yield

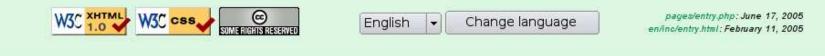
- Coverage of laboratory techniques
- Coverage of reaction types
- Alternative methods
- High stoichiometric yield
- High chemo-, regio-, and stereoselectivity

- Coverage of laboratory techniques
- Coverage of reaction types
- Alternative methods
- High stoichiometric yield
- High chemo-, regio-, and stereoselectivity
- High energy efficiency

- Coverage of laboratory techniques
- Coverage of reaction types
- Alternative methods
- High stoichiometric yield
- High chemo-, regio-, and stereoselectivity
- High energy efficiency
- High substance efficiency

- Coverage of laboratory techniques
- Coverage of reaction types
- Alternative methods
- High stoichiometric yield
- High chemo-, regio-, and stereoselectivity
- High energy efficiency
- High substance efficiency
- Low substance risk potential





Welcome!

Sustainability in the organic chemistry lab course

For optimal viewing of the NOP pages JavaScript has to be activated in your browser and the Chime plugin must be installed. The pages were optimized for a screen resolution of 1024 x 768. Help with the installation of Chime with newer browsers is available.

The NOP wants to convey ...

... modern organic chemistry including alternative methods

The NOP wants to convey ...

- ... modern organic chemistry including alternative methods
- ... a feeling for substance risks

The NOP wants to convey ...

- ... modern organic chemistry including alternative methods
- ... a feeling for substance risks
- ... a feeling for the environmental load

The NOP wants to convey ...

- ... modern organic chemistry including alternative methods
- ... a feeling for substance risks
- ... a feeling for the environmental load
- ... the concept of sustainable development

Sustainability

Version control

Sustainability

Summary

What is the meaning of sustainable development?

The history of sustainable development

Economic rules

Ecological rules

Social rules

Sustainability in chemistry

References

Sustainability in chemistry

Chemistry in the context of sustainable development is at the same time a chance and a risk. The risks are high, as demonstrated by the accidents at Seveso in Italy, Bophal in India and at Sandoz Corp. in Basle, Switzerland. Also, seemingly less important effects like the ubiquitous emission and accumulation of POPs (persistent organic pollutants), have their origin in the chemical industry.

Besides these dangers, chemistry offers great potentials for sustainable development [12]. The chemical industry can support the development towards a more sustainable lifestyle of society according to its competence in the field of transformation of products and materials.

The production of insulation material for public and private buildings is a good example of the contributions chemistry has made in this process. The energy necessary for the production of these materials is conserved within the first year of operation by reduced heating needs [13]. A long-term reduction of the energy used for heating buildings has become possible. Another example is the development of catalytic converters for motor vehicles, which led to a great reduction in emissions. This in turn has lead to a significant improvement of environmental air quality. In the following chapters, the stands and statements of trade unions and of chemical industry regarding the issue of sustainable development will be discussed.

Perspective of the environmental organzations

Today, there are detailed regulations imposed by the legislation of most modern states regarding environmental issues like the handling of chemical compounds and maintenance of chemical plants. These regulations are the result of the controversial discussions in the 1980s about the role of chemistry. The former social explosiveness expressed, e.g. by reports like "Seveso ist überall" (Seveso is everywhere) [14] has cooled down. In addition, environmental NGOs have

Sustainability international

Sommario

Che cosa significa sviluppo sostenibile?

Storia dello sviluppo sostenibile

Economic rules

Regole ecologiche

Regole sociali

La sostenibilità nella chimica

Riferimenti bibliografici

La sostenibilità nella chimica

La chimica in un contesto di sviluppo sostenibile rappresenta, al tempo stesso, un'opportunità ed un pericolo. I rischi sono seri come dimostrato dagli incidenti di Seveso in Italia, Bophal in India e alla società Sandoz di Basilea in Svizzera. Vanno inoltre considerate le emissioni di inquinanti organici persistenti (solitamente indicati con l'abbreviazione POP o POPs, dall'inglese Persistent Organic Pollutants; n.d.t.) da parte delle industrie chimiche. Tali emissioni sono ubiquitarie e i contaminanti rilasciati spesso tendono ad accumularsi nell'ambiente.

Eppure, oltre a presentare tali pericoli, la chimica offre grandi applicazioni potenziali per lo sviluppo sostenibile [12]. L'industria chimica può favorire l'adozione di uno stile di vita più sostenibile, mettendo a disposizione le sue competenze nel campo della trasformazione dei materiali e dei prodotti.

Un buon esempio di quanto appena esposto sono i materiali isolanti usati negli edifici pubblici e privati. L'energia richiesta per la loro produzione viene recuperata in un solo anno grazie alla minor richiesta di energia degli impianti di riscaldamento [13]. Diviene così possibile una riduzione a lungo termine dell'energia usata per il riscaldamento degli edifici. Un altro esempio è quello dell'introduzione delle marmitte catalitiche per gli autoveicoli che ha portato ad una notevole diminuzione nell'emissione di inquinanti, che si riflette in un miglioramento della qualità dell'aria.

Nei prossimi paragrafi descriveremo le posizioni e le dichiarazioni di vari soggetti e dell'industria chimica in relazione allo sviluppo sostenibile.

Il punto di vista delle organizzazioni ambientali

Attualmente la maggior parte degli stati moderni ha emesso normative dettagliate in materia di protezione ambientale, che riguardano, ad esempio, la manipolazione dei composti chimici e la manutenzione degli impianti chimici. Tali leggi sono il risultato di discussioni controverse circa il ruolo della chimica che risalgono agli anni '80.

-

Sustainability international

Zusammenfassung

Was ist Nachhaltigkeit

Geschichte der Nachhaltigkeit

Ökonomische Regeln

Ökologische Regeln

Gesellschaftliche Regeln

Nachhaltigkeit in der Chemie

Literatur

Nachhaltigkeit in der Chemie

Die Chemie ist für das Konzept der nachhaltigen Entwicklung Chance und Gefahr zugleich. Die mit Chemie im Zusammenhang stehenden Gefahren sind groß und zeigen sich bei Unfällen wie in Seveso, Bophal oder bei Sandoz. Auch auf den ersten Blick weniger dramatische Auswirkungen, wie z.B. die ubiquitäre Verbreitung von POPs (Persistent organic pollutants) haben ihren Ursprung zum Teil in der chemischen Industrie. Neben diesen Gefahren, bietet die Chemie aber auch große Potenziale für eine nachhaltigere Entwicklung [12]. Durch die Kompetenz dieses Industriezweiges auf dem Gebiet der Stoffumwandlung können wichtige Teilbereiche bei der Entwicklung hin zu einer nachhaltigen Gesellschaft mitgestaltet werden. Ein herausragendes Beispiel hierzu ist die Herstellung von Isoliermaterialien zur Gebäudedämmung. Die zur Herstellung der Dämmmaterialien verbrauchte Energie kann oft schon nach einem Jahr durch verringerte Energieverluste eingespart werden [13], eine langfristige Reduktion des Energieverbrauchs aus der Gebäudeheizung wurde dadurch erst möglich gemacht. Auch die Entwicklung von Katalysatoren, z.B. für den Kraftfahrzeugbereich brachte große Reduktionen der Emissionslasten und damit eine Verbesserung der Umweltsituation. Wie Umweltverbände und Chemieindustrie auf die Forderungen nach einer "Nachhaltigen Entwicklung" reagieren, soll in den folgenden Abschnitten geklärt werden.

Sichtweise der Umweltverbände

Im Zuge der stark kontroversen Diskussionen um Chemie, die in den 80er Jahren geführt wurden, ist auch ein umfangreiches staatliches Regelwerk zum Umgang mit chemischen Stoffen und chemischen Produktionsanlagen entstanden. Die gesellschaftliche Brisanz, die sich z.B. in Berichten wie "Seveso ist überall" [14] niederschlug, ist bei weitem nicht mehr so groß. Überdies werden die Umweltverbände heute in die chemiepolitischen Entscheidungen eingebunden. Weiterhin ist zu beobachten, dass andere Diskussionen, wie z.B. die Diskussionen

NOP - How?

Legal requirements

Evaluation methods for chemical substances and reactions

Laboratory techniques

NINE	
Laboratory techniques	
 Arbeitsmethoden im Laboratorium Sustainable synthesis optimization rules Alternative methods of energy input: Microwave technology Technical instructions for hot extraction filtration in microwave ovens Technical instructions for the standard reflux apparatus in microwave ovens Used solvents in the laboratory: Disposal and/or recycling? 	 Chromatographische Analysenmethoden Spektroskopische Methoden Environmental aspects of using vacuum Environmental aspects of introducing energy into reaction mixtures
W3C XHTML W3C CSS SUMMERICALINATION RESERVED English	Change language pages/techniques.php: October 29, 2004

ONLINE Glossary Search Show all energy Search term: ABCDEFGHIJKLMNOPQRSTUVWXYZ Term Definition Article Compare 20 energy efficiency: Mass of the purified product per kJ of invested energy. The energy efficiency of a synthesis is strongly dependent on the equipment used, the experimentalist, and the preparation size. 20 energy-induced This key value describes the ratio of the amount of methane that must be burnt in a model energy plant to generate enough energy to perform a specific reaction to the mass of the generated methane equivalents: product. W3C THTML 6 W3C css English Change language pages/glossary.php: December 23, 2004 Ŧ ME RIGHTS RESERVED

Glossary

mass

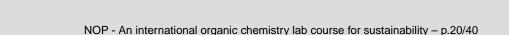
efficiency

Experiments

Experiments

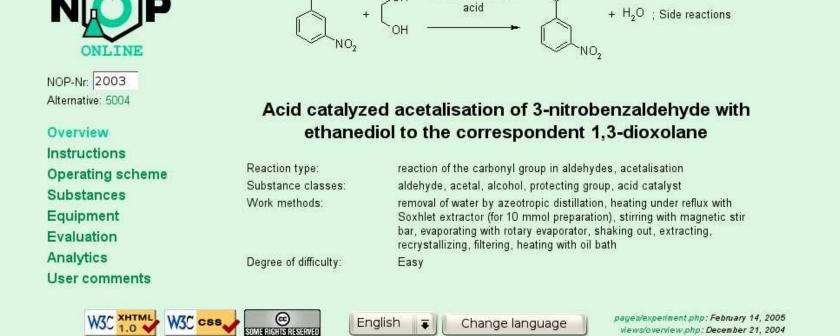
Experiments that are part of the NOP teaching module are shown on a grey background

Show all experiments


All degrees of difficulty

NOP-NO	o Title	Substance classes	Reaction type	Work methods	Difficulty
2003	Acid catalyzed acetalisation of 3-nitrobenzaldehyde with ethanediol to the correspondent 1,3-dioxolane	aldehyde, acetal, alcohol, protecting group, acid catalyst	reaction of the carbonyl group in aldehydes, acetalisation	under reflux with Soxhlet extractor (for 10 mmol preparation), stirring with magnetic stir bar, evaporating with rotary evaporator, shaking out,	Easy
2002	Acid catalyzed acetalisation of acetoacetic acid ethyl ester with ethanediol to the corresponding 1,3-dioxolane	ketone, alcohol, acetal, protecting group, acid catalyst	group in ketones,	removal of water by azeotropic distillation, stirring with KPG stirrer, filtering, evaporating with rotary evaporator, distilling under reduced pressure, fractionating column distillation, rectifying, heating with oil bath, stirring with magnetic stir bar	Easy
2005	Synthesis of the acetonide of meso-1,2-diphenyl-1,2-ethanediol (2,2-dimethyl-4,5-diphenyl-1,3-dioxolane)	ketone, alcohol, acetal, protecting group, acid catalyst	reaction of the carbonyl group in ketones, acetalisation	heating under reflux, stirring with magnetic stir bar, filtering, evaporating with rotary evaporator, shaking out, extracting, recrystallizing, working with moisture exclusion, heating with oil bath	Easy

LIET



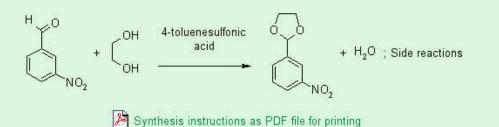
Universität Bremen

OH.

4-toluenesulfonic

H

INCA



Instructions

NOP-Nr: 2003 Alternative: 5004

Overview Instructions Operating scheme Substances Equipment Evaluation Analytics User comments

Acid catalyzed acetalisation of 3-nitrobenzaldehyde with ethanediol to the correspondent 1,3-dioxolane

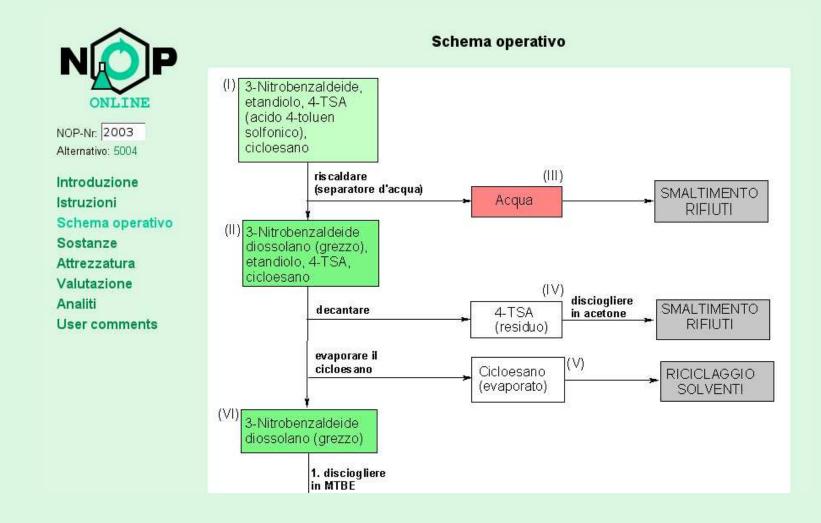
Batch scale: 💿 0.1 mol 🔘 0.01 mol 3-Nitrobenzaldehyde

Reaction

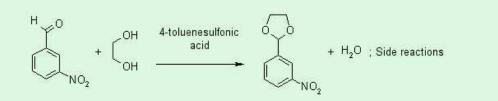
3-Nitrobenzaldehyde (15.1 g, 100 mmol), ethanediole (6.83 g, 6.20 mL, 110 mmol) and 4-toluenesulfonic acid monohydrate (1.00 g, 5.30 mmol) ① are dissolved in cyclohexane (200 mL) in a dry 500 mL round bottom flask equipped with magnetic stirring bar, Dean Stark trap and reflux condenser. The reaction mixture is refluxed until no more water @ is collected in the Dean-Stark trap (approx. 2-3 h ①).

Work up

The hot reaction mixture is poured into another 500 mL round bottom flask to separate it from an oily sediment (800 mg) which has formed at the bottom of the reaction vessel. The sediment consists predominantly of product, starting material and 4-toluenesulfonic acid (¹H-NMR spectrum). The solvent of the decanted solution is directly removed with a rotary evaporator ⁽¹⁾. A yellow crystalline solid remains as crude product.


Crude product yield: 19.7 g; melting point 50-52 °C; Purity according to GC: 95% acetale + 4% aldehyde

Operating scheme


Required substances

NOP-Nr: 2003 Alternative: 5004

Overview Instructions Operating scheme Substances

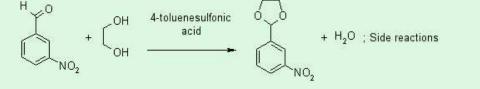
- Substances required
- Substances produced
- Data availability
- Effect factors TRGS 440 - Stoichiometry
- Stoicmonnetry
- Equipment Evaluation
- Analytics
- User comments

Substances required

Batch scale: 💿 0.1 mol 🔘 0.01 mol 3-Nitrobenzaldehyde

Educts		Amount	Risk	Safety
3-Nitrobenzaldehyde	🗙 Xn	15.1 g	R 22-36/37/38	S 22-24/25-26-36
1,2-Ethanediol	🗙 Xn	6.83 g	R 22	S 2
Catalyst		Amount	Risk	Safety
4-Toluenesulfonic acid monohydrate	🗙 Xi	0.19 g	R 36/37/38	S 2-26-37
Solvents		Amount	Risk	Safety
Cyclohexane	뵭 F 🗙 Xn 鼗 N	~ 230 mL	R 11-38-50/53-65-67	S 2-9-16-33-60-61-62
tert-Butyl methyl ether	🔥 F 🗙 Xi	230 mL	R 11-38	S 2-9-16-24
Others		Amount	Risk	Safety
Sodium disulfite	🗙 Xn	~ 13 g	R 22-31-41	S 2-26-39-46
Sodium sulfate	🗙 Xi	~ 5 g	R 36/37/38	S 26-36
Molecular sieve 4A	🗙 Xi	0 g	R 36/37/38	S 24/25

Universität Bremen


Substances produced

NOP-Nr: 2003 Alternative: 5004

Overview Instructions **Operating scheme** Substances

- Substances required
- Substances produced
- Data availability
- Effect factors TRGS 440
- Stoichiometry
- Equipment
- Evaluation
- Analytics
- User comments

Substances produced

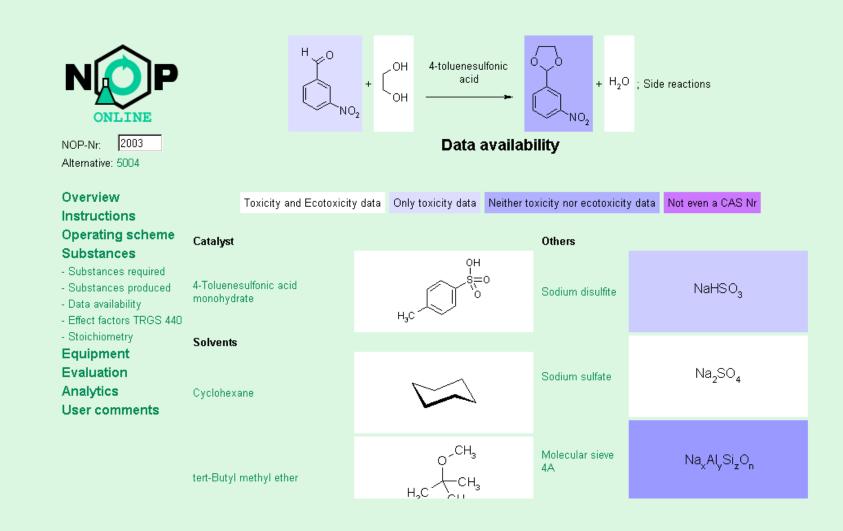
Batch scale: (0.1 mol (0.01 mol 3-Nitrobenzaldehyde

Products	Amount	Risk	Safety
2-(3-Nitrophenyl)-1,3-dioxolane	17.9 g	R no data	S no data
Water		R	S

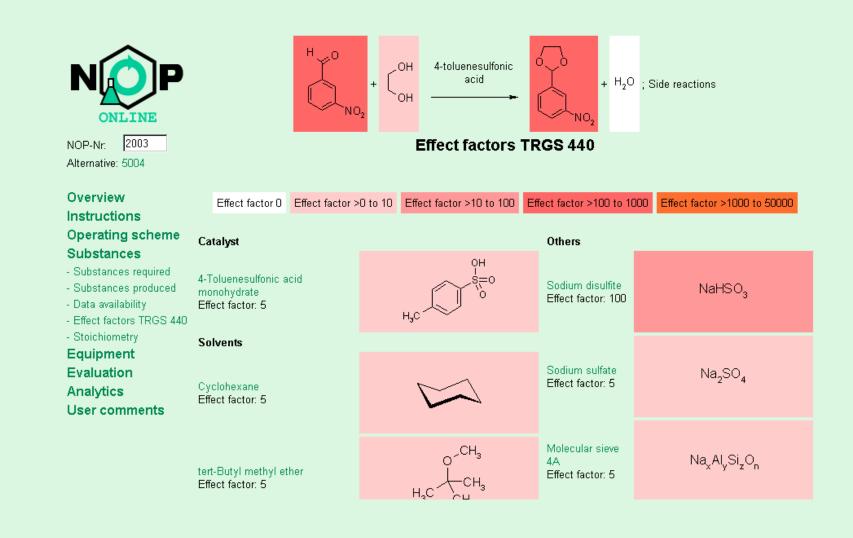
Waste Disposal aqueous phase from water separator solvent water mixtures, halogen free aqueous phase from shaking out solvent water mixtures, halogen free dissolve residue from reaction flask in a small amont of acetone organic solvents, halogen free mother liquor from recrystallisation organic solvents, halogen free sodium sulfate solid waste, free from mercury

English Change language pages/experiment.php: February 14, 2005 views/produced.php: March 01, 2005

no data

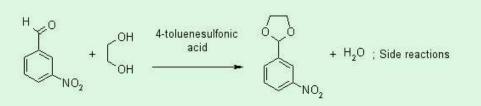


Data availability



Universität Bremen

Effect factors



Equipment

NOP-Nr: 2003 Alternative: 5004

Overview Instructions Operating scheme Substances Equipment Evaluation Analytics User comments

Equipment

Batch scale: 💿 0.1 mol 🔘 0.01 mol 3-Nitrobenzaldehyde

round bottom flask 500 mL

water separator

reflux condenser

heatable magnetic stirrer with magnetic stir bar

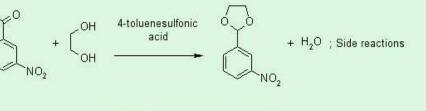
separating funnel

rotary evaporator

Evaluation indices

H

English


Ŧ

NOP-Nr: 2003 Alternative: 5004

Overview Instructions Operating scheme Substances Equipment Evaluation - Indices - Evaluation text Analytics User comments

Simple evaluation indices

Batch scale: 💿 0.1 mol 🔘 0.01 mol 3-Nitrobenzaldehyde

Atom economy	91.5	%
Yield	92	%
Target product mass	17.9	g
Sum of input masses	390	g
Mass efficiency	46	mg/g
Energy input	2500	kJ
Energy efficiency	7.2	mg/kJ

Change language

pages/experiment.php: February 14, 2005 views/indices.php: February 05, 2005

Evaluation texts

 $H = O + O + O + O + O + A-toluenesulfonic acid + H_2O; Side reactions + H_2O; Side reactions + H_2O; Side reactions + H_2O + H$

NOP-Nr: 2003 Alternative: 5004

Overview Instructions Operating scheme Substances Equipment Evaluation - Indices - Evaluation text Analytics User comments

Evaluation text

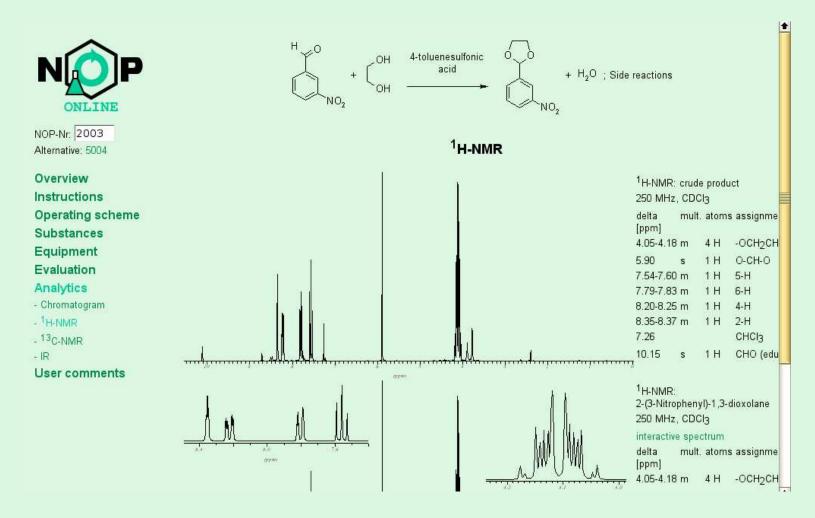
The classical variant of the "Acid catalyzed acetalisation of 3-nitrobenzaldehyde with ethanediol to the correspondent 1,3-dioxolane" is an easily performed experiment. The desired product is obtained in high yield ? and high selectivity. Also the purity of the end product is very high.

The mass efficiency is high to medium, compared to the other NOP experiments and thus evaluates as good ?. The energy efficiency of the classical experiment is highly dependent on the method of heating ?.

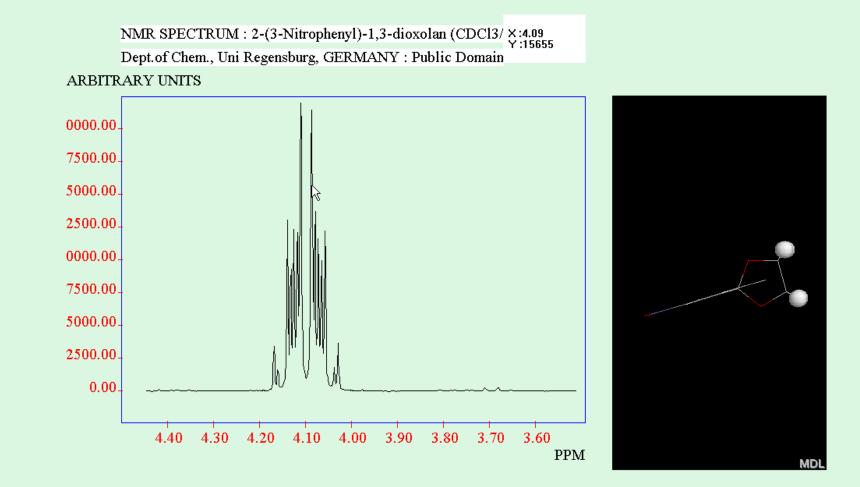
(Eco)toxicological data for the educt 3-nitrobenzaldehyde are incomplete, toxicological data for the product 2-(3-nitrophenyl)-1,3-dioxolane have not been determined at all. According to theoretical prediction methods both product and educt are suspected to have mutagenic, carcinogenic and sensitizing properties. The organic solvents used in this experiment ethanol, cyclohexane and tert-butyl methyl ether exhibit relatively low acute toxicity. Also the inorganic auxiliary materials do not pose significant dangers to human health ?

Educt, product and the solvents cyclohexane and tert-butyl methyl ether are biologically not easily degradable, and some are classified as dangerous to the environment because of their toxicity to aquatic organisms ?

Summed up we evaluate this experiment with a good economic efficiency and acceptable toxicological risks, but a relatively high environmental persistence of the used substances with the "yellow light".



Analytics

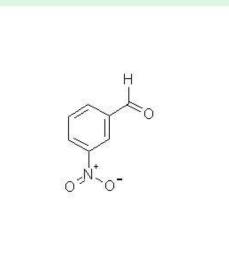


INCA

Interactive spectra

Substances

Example



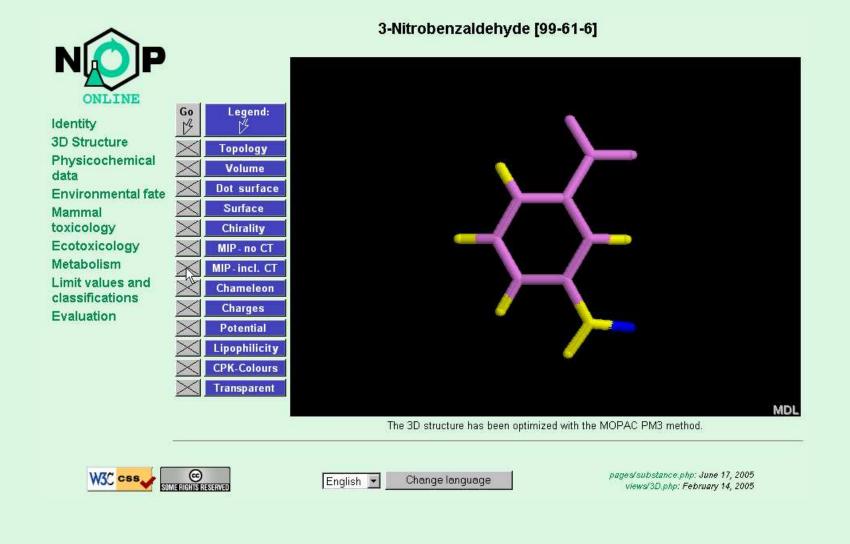
Identity

3D Structure Physicochemical data **Environmental fate** Mammal toxicology Ecotoxicology Metabolism Limit values and classifications Evaluation

3-Nitrobenzaldehyde [99-61-6]

Name	3-Nitrobenzaldehyde		
Synonyms			
Name in Chemical Abstracts	Benzaldehyde, 3-nitro-		
CAS No	99-61-6		
EINECS No	202-772-6		
Molecular formula	C7H5NO3		
Molecular mass	151.12		
SMILES code	0=Cc1cc(N(=0)=0)cc		

cc1

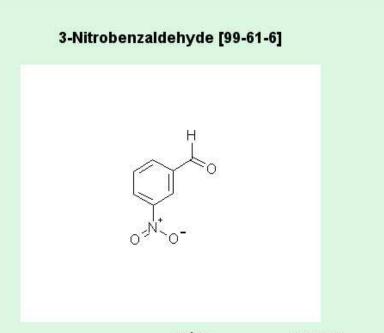


3D molecular interaction potentials

Version control

[nop] / <u>www</u> / pages / substance.php	Project Root:	₹ Go
View of /www/pages/s	ubstance.php	ViewCVS
▶ Parent Directory Parent Directory Revision Log Parent Directory Parent Di		
Revision: 201 - (<u>download</u>) (<u>as text</u>) <i>Fri Jun 17 15:30:45 2005 UTC</i> (14 hours, 49 minute File size: 4005 byte(s)	es ago) by <i>ranke</i>	
Some cosmetics and a better explanation explanation explanation page.	of the NOP project in the acrony	m
<pre><?php if (!\$_GET["chent_id"]) \$chent_id= "1"; if (!\$_GET["view"]) \$view = "identity";</pre></pre>		"];
<pre>if (!\$subview) { switch (\$view) { case "evaluation":</pre>		
break; } }		

INCA

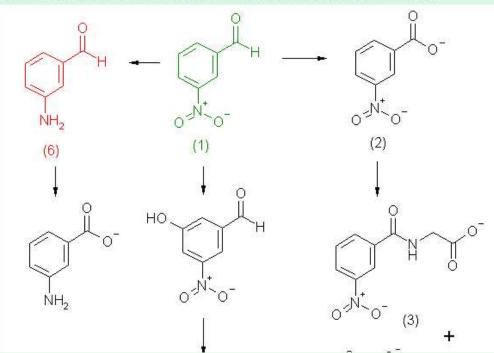

LIFT

Environmental fate

Identity 3D Structure Physicochemical data Environmental fate Mammal toxicology Ecotoxicology Metabolism Limit values and classifications Evaluation

	value	comment	source	
Water solubility	1630 mg/L at 25 °C		EPIWIN 3.10	
Octanol water distribution coefficient log Kow	1.47 at room temperature		EPIWIN 3.10	
Octanol water distribution coefficient log Kow	1.53 at room temperature	calculated	EPIWIN 3.10	
Soil adsorption coefficient log Koc	1.58	calculated	EPIWIN 3.10	
Henry constant	0.0538 Pa·m ³ /mol at 25 °C	calculated	EPIWIN 3.10	

Metabolism



3-Nitrobenzaldehyde [99-61-6]

Theoretical prediction: In mammals an aldehyde dehydrogenase oxidizes 3-nitrobenzaldehyde (1) to 3-nitrobenzoic acid (2). This metabolite can be excreted as a glycine conjugate (3) or as glucuronic acid ester (4). Also 3-nitrobenzaldehyde (1) can be metabolized by cytochrome P450 with hydroxylation of the aromatic ring and subsequent oxidation to the corresponding benzoic acid derivates (5). A possible reduction to the aromatic amine (3-aminobenzaldehyde (6)) which generates toxic intermediates is probably less important, but cannot be excluded totally.

Identity 3D Structure Physicochemical data Environmental fate Mammal toxicology Ecotoxicology Metabolism Limit values and classifications Evaluation

Conclusions

First adoptions in lab courses in Germany

- First adoptions in lab courses in Germany
- English version useable, but not complete

- First adoptions in lab courses in Germany
- English version useable, but not complete
- Italian version almost as far

- First adoptions in lab courses in Germany
- English version useable, but not complete
- Italian version almost as far

Your contributions are welcome!

Deutsche Bundesstiftung Umwelt

- Deutsche Bundesstiftung Umwelt
- Consortium INCA

- Deutsche Bundesstiftung Umwelt
- Consortium INCA
- All contributors

- Deutsche Bundesstiftung Umwelt
- Consortium INCA
- All contributors
- US EPA and American Chemical Society

http://kriemhild.uft.uni-bremen.de/nop_www

- Deutsche Bundesstiftung Umwelt
- Consortium INCA
- All contributors
- US EPA and American Chemical Society

http://kriemhild.uft.uni-bremen.de/nop_www

