Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Progress in regulatory degradation kinetics SETAC Europe 24th Annual Meeting

PD Dr. Johannes Ranke Scientific consultant

Basel, 13 May 2014

jrwb.de

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolit models

Conclusions

How do you define progress?

jrwb.de

Progress in regulatory kinetics

> PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

1 The tasks of regulatory degradation kinetics

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

1 The tasks of regulatory degradation kinetics

2 Parameter confidence intervals

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolit models

- 1 The tasks of regulatory degradation kinetics
- 2 Parameter confidence intervals
- **3** Biphasic models for metabolites

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

1 The tasks of regulatory degradation kinetics

2 Parameter confidence intervals

3 Biphasic models for metabolites

Progress in regulatory kinetics

> PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Derive endpoints for fate modelling

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Derive endpoints for fate modelling

Provide endpoints for comparison with trigger values

Progress in regulatory kinetics

> PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Derive endpoints for fate modelling

Provide endpoints for comparison with trigger values

 Triggers for further data requirements (EU pesticides: FOCUS kinetics "persistence endpoints")

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

- Derive endpoints for fate modelling
- Provide endpoints for comparison with trigger values
 - Triggers for further data requirements (EU pesticides: FOCUS kinetics "persistence endpoints")
 - Triggers for persistence, P and vP (Regulation 1107/2009, REACH)

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

- Derive endpoints for fate modelling
- Provide endpoints for comparison with trigger values
 - Triggers for further data requirements (EU pesticides: FOCUS kinetics "persistence endpoints")
 - Triggers for persistence, P and vP (Regulation 1107/2009, REACH)
- Reflect endpoint uncertainty

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Provide the best possible foundation

Transparency

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Provide the best possible foundation

- Transparency
- Scientific quality

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Provide the best possible foundation

- Transparency
- Scientific quality
- Technical quality

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Provide the best possible foundation

- Transparency
- Scientific quality
- Technical quality
- Collaboration

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolit models

Conclusions

Provide the best possible foundation

- Transparency √
- Scientific quality
- Technical quality
- Collaboration

R

www.r-project.org

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Provide the best possible foundation

- Transparency √
- Scientific quality ?
- Technical quality
- Collaboration

Version: 1.0 Date: 23 November 2011

Generic guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration

www.r-project.org - focus.jrc.ec.europa.eu/dk

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Provide the best possible foundation

- Transparency √
- Scientific quality ?
- Technical quality
- Collaboration

Model cost at call 161 : 242.2306 Model cost at call 165 : 242.2306 Model cost at call 171 : 242.2306 Model cost at call 175 : 242.2306 done successfully.

Executing test function test.SFO_solution_types ... done successfully.

..... UNIT TEST SUMMARY

RUNIT TEST PROTOCOL -- Fri May 9 16:30:24 2014

l Test Suite : mkin Unit Tests - 8 test functions, 0 errors, 0 failures

www.r-project.org - focus.jrc.ec.europa.eu/dk R CMD check mkin_0.9-27.tar.gz

Version: 1.0 Date: 23 November 2011

Generic guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Provide the best possible foundation

- Transparency √
- Scientific quality ?
- Technical quality
- Collaboration !

Model cost at call 161 : 242.2306 Model cost at call 165 : 242.2306 Model cost at call 171 : 242.2306 Model cost at call 175 : 242.2306 done successfully.

Executing test function test.SFO_solution_types ... done successfully.

...... UNIT TEST SUMMARY

RUNIT TEST PROTOCOL -- Fri May 9 16:30:24 2014 Number of test functions: 8 Number of errors: 0 Number of allures: 0

l Test Suite : mkin Unit Tests - 8 test functions, 0 errors, 0 failures

www.r-project.org - focus.jrc.ec.europa.eu/dk
R CMD check mkin_0.9-27.tar.gz - github.com/jranke/mkin

Version: 1.0 Date: 23 November 2011

Generic guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration

Critical areas

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolit models

- t-test for parameter significance (assumes normal distribution for estimator)
- Confidence intervals for fitted parameters
- Modelling biphasic behaviour of metabolites

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

mkin was first published in May 2010, including biphasic models for metabolites since May 18. It was then used to develop

- KinGUII (Bayer Crop Science)
- CAKE (Syngenta)

by adding a graphical user interface (GUI), iteratively reweighted least squares (IRLS) and Markov Chain Monte Carlo (MCMC)

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolit models

Conclusions

mkin was first published in May 2010, including biphasic models for metabolites since May 18. It was then used to develop

- KinGUII (Bayer Crop Science)
- CAKE (Syngenta)

by adding a graphical user interface (GUI), iteratively reweighted least squares (IRLS) and Markov Chain Monte Carlo (MCMC)

Isometric logratio transformation (ILR) for fitting formation fractions together with René Lehmann (UBA) in 2012

Ranke and Lehmann, SETAC World 20-24 May 2012, Berlin

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

mkin was first published in May 2010, including biphasic models for metabolites since May 18. It was then used to develop

- KinGUII (Bayer Crop Science)
- CAKE (Syngenta)

by adding a graphical user interface (GUI), iteratively reweighted least squares (IRLS) and Markov Chain Monte Carlo (MCMC)

Isometric logratio transformation (ILR) for fitting formation fractions together with René Lehmann (UBA) in 2012

Parameter confidence intervals based on transformed parameters (2013)

Ranke and Lehmann, SETAC World 20-24 May 2012, Berlin

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

mkin was first published in May 2010, including biphasic models for metabolites since May 18. It was then used to develop

- KinGUII (Bayer Crop Science)
- CAKE (Syngenta)

by adding a graphical user interface (GUI), iteratively reweighted least squares (IRLS) and Markov Chain Monte Carlo (MCMC)

Isometric logratio transformation (ILR) for fitting formation fractions together with René Lehmann (UBA) in 2012

Parameter confidence intervals based on transformed parameters (2013)

mkin (\geq 0.9-27) allows for fitting models with or without formation fractions, with or without parameter transformations.

Ranke and Lehmann, SETAC World 20-24 May 2012, Berlin mkin 0.9-27 published on CRAN 10 May 2014

Soil metabolism of 2,4,5-T in the lab

0

150

100

• T245

100 150

phenol

anisole

8/22

2,4,5-T in Commerce soil in gmkin

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

irwb.de

Pathway from 2,4,5-T-phenol to sink?

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Parameters	Fit options	Summary	Plot options				
mkin versio	1: 0.9.27						
R version:	3.1.0						
Date of fit	Fri Ma	7 9 08:24	:05 2014				
Date of sum	nary: Fri Ma	9 08:24	:05 2014				
Equations:							
[1] d_T245	= - k_T245_s	ink * T245	- k_T245_phe	nol * T245			
<pre>[2] d_pheno</pre>	$L = + \frac{1}{2} \frac{1}{245}$	phenol *	T245 - k_pher	ol_sink * p	henol - k_	phenol_ani:	sole * phe:
[3] d_aniso	le = + k_phe	<pre>nol_anisol</pre>	e * phenol -	k_anisole_s	ink * anis	ole	
W							
nethoù usea	LOL SOLUCIO	i or airre	rentrar equat	TOU SARCEN:			
erMen							
Weighting: :	nanual						
Starting va	lues for opt	laised par	ameters:				
	val	ie type	transformed				
T245_0	100.00	10 state	100.0000				
k_T245_sink	0.10	10 deparm	0.1000				
k_T245_phen	0.10	ll deparm	0.1001				
k_phenol_si:	uk 0.10	12 deparm	0.1002				
k_phenol_an	isole 0.10	13 deparm	0.1003				
k_anisole_s	ink 0.10	14 deparm	0.1004				
Fived naram	ter valuer						
v	alue type						
phenol 0	0 state						
anisole 0	0 state						
-							
Optimised,	transformed p	arameters					
	Estim	ate Std. E	rror Lowe	r Upper	t value	Pr(> t)	Pr(>t)
T245_0	1.039e	+02 2.426	0000 98.76000	0 1.090e+02	4.282e+01	1.447e-19	7.236e-20
k_T245_sink	1.636e	-02 0.018	3800 -0.02225	U 5.498e-02	8.901e-01	3.851e-01	1.926e-01
g_f245_phen	2.701e	02 0.017	9800 -0.01072	U 6.474e-02	1.504e+00	1.500e-01	7.499e-02
<pre>k_phenol_si:</pre>	uz 3.090e	-09 0.281	1000 -0.59060	U 5.906e-01	1.099e-08	1.000e+00	5.000e-01
g_pnenol_an	usoie 4.051e	-UI 0.160	9000 0.06703	U 7.431e-01	2.518e+00	2.151e-02	1.075e-02
x_anisole_s	LINK 0.0796	-03 0.000	0100 0.00495	c c. wJIe-U3	0.1466+00	1.0946-07	a.40a6-08
Backtransfo	med naranet						
poon of otto FA	Estim.	ate Lo	wer Upper				
T245 D	1.0398	02 98.760	000 1.090e+02				
TTO AT	1.000						

Pathway from 2,4,5-T-phenol to sink?

k_phenol_sink negligible - fix to zero

10/22

Pathway from 2,4,5-T-phenol to sink?

k_phenol_sink negligible - fix to zero

2,4,5-T in Commerce soil, no path to sink

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Starting values	for optim:	ised par	cameters:
	value	type	transformed
T245_0	100.0000	state	100.0000
k_T245_sink	0.1000	deparm	0.1000
k_T245_phenol	0.1001	deparm	0.1001
k_phenol_anisole	0.1003	deparm	0.1003
k_anisole_sink	0.1004	deparm	0.1004

Fixed parameter values:

	value	type	
phenol_0	0	state	
anisole_O	0	state	
k_phenol_sink	0	deparm	

Optimised, transformed parameters:

 Battante \$5d. Error
 Lower
 Uppert value
 Pr()b1)
 Pr(>b2)

 Tr44_0
 1.039+02
 2.350009
 9.930000
 10.980+02
 4.46.0
 1.525-02
 6.425-21

 k_T245_sinak
 1.636+02
 0.001269
 0.011620
 2.960+02
 7.545
 3.597+07
 1.978+07

 k_T245_sinak
 2.701+02
 0.001510
 0.72400
 2.984-02
 1.599
 3.121+4
 1.677+03
 2.014+07

 k_phenol_mainslet
 4.051+01
 0.125000
 6.4520+01
 3.727
 0.072+03
 2.014+00

 sunslet
 4.051+01
 0.007469
 0.003115
 0.424+01
 5.942
 3.962+00
 1.542+00

Backtransformed parameters:

	Estimate	Lower	Upper	
F245_0	1.039e+02	98.930000	1.088e+02	
r_T245_sink	1.636e-02	0.011820	2.090e-02	
r_T245_phenol	2.701e-02	0.024180	2.984e-02	
_phenol_anisole	4.051e-01	0.145800	6.643e-01	
_anisole_sink	6.679e-03	0.005115	8.242e-03	

2,4,5-T in Commerce soil, no path to sink

11/22

Rate parameters log transformed during fit

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Starting values :	for optim:	ised par	ameters:
	value	type	transformed
T245_0	100.0000	state	100.000000
k_T245_sink	0.1000	deparm	-2.302585
k_T245_phenol	0.1001	deparm	-2.301586
k_phenol_anisole	0.1003	deparm	-2.299590
k_anisole_sink	0.1004	deparm	-2.298593

Fixed parameter values:

	value	type	
phenol_0	0	state	
anisole_O	0	state	
k_phenol_sink	0	deparm	

Optimised, transformed parameters:

 Estimate Std. Ecroc Lover
 Opper tvalue
 Pr(p(1))
 Pr(p(1))

 T745_0
 10.5900
 7.3500
 66.901 00.000
 44.160
 1.520-20
 64.422-21

 %T345_bren
 -6.110
 0.12520
 -4.390
 -3.0350
 11.690
 5.697-25

 %L7345_bren
 -5.6120
 0.03002
 -3.716
 -3.697
 -72.000
 1.959-24
 5.977-25

 %Lyhens_umisol
 -0.6037
 0.30500
 -1.544
 -0.2637
 -2.555
 0.127-04
 4.059-21

 %Lamisol_simik
 -5.0908
 0.1100
 5.424
 -4.7350
 -4.7950
 4.9790-14
 4.051-14

Backtransformed parameters:

	Estimate	Lower	Upper	
T245_0	1.039e+02	98.930000	108.80000	
k_T245_sink	1.636e-02	0.012400	0.02159	
k_T245_phenol	2.701e-02	0.024320	0.02999	
k_phenol_anisole	4.051e-01	0.213600	0.76820	
k_anisole_sink	6.679e-03	0.005285	0.00844	

Proposal regarding t-test

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Instead of testing rate constants for significant difference from zero:

Use best available estimate

Proposal regarding t-test

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Instead of testing rate constants for significant difference from zero:

- Use best available estimate
- Consider if it is neglibly small

2,4,5-T in Fargo soil

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Fixed paramete	er valu	les:
	value	type
phenol_0	0	state
anisole_O	0	state
k_phenol_sink	0	deparm

Optimised, transformed parameters:

	Estimate	Std. Error	Lower	Upper	t value	Pr(> t)	Pr(>t)	
C245_0	101.300	2.25600	96.610	106.100	44.910	9.396e-21	4.698e-21	
_T245_sink	-5.922	0.76330	-7.519	-4.324	-7.758	2.638e-07	1.319e-07	
r_T245_phenol	-4.020	0.08497	-4.198	-3.842	-47.310	3.530e-21	1.765e-21	
_phenol_anisole	-2.570	0.16670	-2.919	-2.221	-15.420	3.394e-12	1.697e-12	
_anisole_sink	-5.499	0.34400	-6.219	-4.779	-15.980	1.790e-12	8.948e-13	

Backtransformed parameters:

Estimate Lower	Upper	
T245_0 1.013e+02 9.661e+01	1.061e+02	
t_T245_sink 2.681e-03 5.425e-04	1.325e-02	
<pre>k_T245_phenol 1.796e-02 1.503e-02</pre>	2.145e-02	
_phenol_anisole 7.654e-02 5.399e-02	1.085e-01	
<pre>k_anisole_sink 4.090e-03 1.991e-03</pre>	8.404e-03	

14/22

2,4,5-T in Fargo soil Model with formation fractions

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

T24	5_0				<u>⊢o</u>
-					
0	20	40	60	80	100
	нн				k_T245
k_p	henol		H	0	
њн				k	_anisole
	1	1	1	1	
0.00	0.02	0.04	0.06	0.08	0.10
ť_T2	245_to_phe	enol	,		

Fixed	parameter	values:

	value	type
phenol_0	0	state
anisole_0	0	state
f_phenol_to_anisole	1	deparm

Optimised, transformed parameters:

	Estimate	Std. Error	Lower	Upper	t value	Pr(> t)	Pr(>t)
T245_0	101.3000	2.25600	96.6100	106.100	44.910	9.396e-21	4.698e-21
k_T245	-3.8810	0.07455	-4.0370	-3.725	-52.050	5.828e-22	2.914e-22
f_T245_to_phenol	0.8701	0.09293	0.6756	1.065	9.363	1.502e-08	7.511e-09
k_phenol	-2.5700	0.16670	-2.9190	-2.221	-15.420	3.394e-12	1.697e-12
k_anisole	-5.4990	0.34400	-6.2190	-4.779	-15.980	1.789e-12	8.947e-13

Backtransformed parameters:

	Estimate	Lower	Upper
T245_0	101.30000	96.610000	1.061e+02
k_T245	0.02064	0.017660	2.412e-02
f_T245_to_phenol	0.87010	0.675600	1.065e+00
k_phenol	0.07654	0.053990	1.085e-01
k_anisole	0.00409	0.001991	8.404e-03

2,4,5-T in Fargo soil Model with transformed formation fractions

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

-						
0	20	40	60	80	100	
	юн				k_T245	
K_P	henol			0		
юн				k	anisole	
-i	-		-	-		
0.00	0.02	0.04	0.06	0.08	0.10	
1 12	245 to phe	enol				

1	Fixed narameter values:									
		value	type							
	phenol 0	0	state							
	anisole O	0	state							
	f_phenol_to_aniso	le l	deparm							
	Optimised, transformed parameters:									
		Estimate :	Std. Error	Lower	Upper	t value	Pr(> t)	Pr(>t)		
	T245_0	101.300	2.25600	96.610	106.100	44.910	9.396e-21	4.698e-21		
	k_T245	-3.881	0.07455	-4.037	-3.725	-52.050	5.828e-22	2.914e-22		
	k_phenol	-2.570	0.16670	-2.919	-2.221	-15.420	3.395e-12	1.697e-12		
	k_anisole	-5.499	0.34400	-6.219	-4.779	-15.980	1.790e-12	8.949e-13		
	f_T245_to_phenol	1.345	0.58140	0.128	2.562	2.313	3.207e-02	1.604e-02		
	Backtransformed p	arameters								
		Estimate	Lower	Upper						
	T245_0	101.30000	96.610000	1.061e+02						
	k_T245	0.02064	0.017660	2.412e-	-02					
	k_phenol	0.07654	0.053990	1.085e-	-01					
	k_anisole	0.00409	0.001991	8.404e-	-03					
	f_T245_to_phenol	0.87010	0.545100	9.740e-	-01					

We get a plausible confidence interval without doing an MCMC simulation

Parallel formation of metabolites

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Optimised, tran	nsformed p	oarameters:						
	Estinate	Std. Error	Lower	Upper	t value	Pr(> t)	Pt(>t)	
parent_0	93.14000	1.9660	89.0700	97.2000	47.3800	1.945e-24	9.727e-25	
k_parent	-2.94600	0.0671	-3.0850	-2.8070	-43.9000	1.101e-23	5.505e-24	
f_parent_to_Al	0.53640	0.2495	0.0202	1.0530	2.1500	4.234e-02	2.117e-02	
f_parent_to_B1	-0.14300	0.2581	-0.6768	0.3909	-0.5540	5.850e-01	2.925e-01	
f_parent_to_C1	0.01254	0.5360	-1.0960	1.1210	0.0234	9.815e-01	4.908e-01	
k_A1	-4.48100	0.3412	-5.1870	-3.7750	-13.1300	3.579e-12	1.790e-12	
f_A1_to_A2	0.32170	3.1700	-6.2370	6.8800	0.1015	9.201e-01	4.600e-01	
k_B1	-4.27600	0.6800	-5.6830	-2.8690	-6.2880	2.043e-06	1.021e-06	
k_C1	-3.40200	0.4373	-4.3060	-2.4970	-7.7780	6.929e-08	3.464e-08	
k_A2	-3.58800	2.4520	-8.6610	1.4850	-1.4630	1.570e-01	7.849e-02	
Backtransformed parameters:								
	Estinate	Lower	Upper					
parent_0	93.14000	8.907e+01	97.20000					
k_parent	0.05256	4.575e-02	0.06038					
f_parent_to_A1	0.33350	NA	NA					
f_parent_to_B1	0.15620	NA	NA					
f_parent_to_C1	0.27190	NA	NA					
k_A1	0.01132	5.591e-03	0.02294					
f_A1_to_A2	0.61180	1.478e-04	0.99990					
k_B1	0.01389	3.403e-03	0.05673					
20.001	0.00000	1 040 - 00	0.00000					

0.02765 1.732e-04 4.41500

Confidence intervals only for single formation fractions (slide corrected after the meeting)

Data from Schäfer *et al.* (2007) Proc. XIII Symposium Pesticide Chemistry, Piacenza, 2007, p. 916-923

Conceptual comparison of DFOP and SFORB

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Both possible for metabolites, but with two extra parameters.

Alternative with one extra parameter

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

We could also use an Indeterminate Order Rate Equation (IORE) for metabolites

$$\frac{dm}{dt} = \dots - k_m m^n \dots$$

This is used in North America for parent compounds as an equivalent alternative to the FOMC model, with the possibility to test if n is different from unity.

NAFTA Technical Working Group on Pesticides, Guidance for Evaluating and Calculating Degradation Kinetics in Environmental Media (7 p)

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Better collaboration

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolit models

Conclusions

Better collaboration

Improve error model

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

Better collaboration

- Improve error model
- Evaluate related datasets in one step (mixed effect models)

Progress in regulatory kinetics

- PD Dr. Johannes Ranke
- Tasks and motivation
- Confidence intervals
- Metabolit models
- Conclusions

- Better collaboration
- Improve error model
- Evaluate related datasets in one step (mixed effect models)
- Improve model comparisons (ANOVA, AIC)

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

With gmkin + mkin, we now have a completely open sourced software toolset

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

- With gmkin + mkin, we now have a completely open sourced software toolset
- Biphasic models for metabolites can conveniently be fitted

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolit models

- With gmkin + mkin, we now have a completely open sourced software toolset
- Biphasic models for metabolites can conveniently be fitted
- The use of t-tests for parameter significance is questioned

Progress in regulatory kinetics

PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolit models

- With gmkin + mkin, we now have a completely open sourced software toolset
- Biphasic models for metabolites can conveniently be fitted
- The use of t-tests for parameter significance is questioned
- Plausible confidence intervals for rate constants and single formation fractions are easily available

Documentation

Progress in regulatory kinetics

> PD Dr. Johannes Ranke

Tasks and motivation

Confidence intervals

Metabolite models

Conclusions

mkin 0.9-27 🌼 Index

mkin

The R package mkin provides calculation routines for the analysis of chemical degradation data, including multicompartment kinetics as needed for modelling the formation and decline of transformation products, or if several compartments are involved.

Installation

You can install the latest released version from CRAN from within R:

install.packages('mkin')

If looking for the latest features, you can install directly from github, e.g. using the <u>devtosis</u> package. Using <u>quick</u> - TRUE skips docs, multiple-architecture builds, demos, and vignettes, to make installation as fast and painless as possible.

require(devtools) install_github("akin", "jranke", quick = TRUE)

Background

In the regulatory evaluation of chemical substances like plant protection products (pesticides), biocides and other chemicals, degradation data ging an important role. For the evaluation of pasticide degradation experiments, detailed guidance and heipful tools have been developed as detailed in "Cardits and historical remarks" below.

Usage

A very simple usage example would be

For more examples have a look at the examples provided in the stintic documentation or the package vignettes referenced from the mkin package documentation page

Features

kinfit.r-forge.r-project.org/mkin_static

Vignettes

- Example evaluation of FOCUS Laboratory Data L1 to L3
- Example evaluation of FOCUS dataset Z
- Routines for fitting kinetic models with one or more state variables to chemical degradation data

Dependencies

- · Depends: minpack.lm, rootSolve
- · Imports: FME, deSolve
- · Suggests: knitr, RUnit

Authors

- Johannes Ranke (jranke at uni-bremen.de) faut. cre. cphl
- Katrin Lindenberger [ctb]
- René Lehmann (ctb)
- Eurofins Regulatory AG [cph]