The use of fate models for the risk analysis of chemicals

Models and exposure based indicators

Kolloquium Risikoforschung

13.12.2001

Johannes Ranke

Road map

- 1. Context of sustainable product design
- 2. Fate indicators
- 3. Spatiotemporal range
- 4. Model types and examples
- 5. Conclusions

Fate and sustainability

Intergenerational equity

Fate and sustainability

- Intergenerational equity
- Social justice

Fate and sustainability

- Intergenerational equity
- Social justice
- Ecosystem protection

Sustainable Product Design

Single-medium half life

- Single-medium half life
- "Overall" persistence

- Single-medium half life
- "Overall" persistence
- Henry constant, sorption constants

- Single-medium half life
- "Overall" persistence
- Henry constant, sorption constants
- Mobility

- Single-medium half life
- "Overall" persistence
- Henry constant, sorption constants
- Mobility
- Characteristic Travel Distance

- Single-medium half life
- "Overall" persistence
- Henry constant, sorption constants
- Mobility
- Characteristic Travel Distance
- Spatial range

- Single-medium half life
- "Overall" persistence
- Henry constant, sorption constants
- Mobility
- Characteristic Travel Distance
- Spatial range
- Predicted Environmental Concentrations

Technosphere

Environment

Technosphere

Substance

Environment

Input I into the environment

$$I = \sum_{\mathsf{u}} f_{\mathsf{u}} \cdot P_{\mathsf{u}}$$

- Input in tons per year
- u Index of use patterns
- P_u Production volume for use pattern u
- $f_{\rm u}$ Fraction of $P_{\rm u}$ released to environment

Release indicator R

 $R \propto \log_{10} I$

Input in tons per year

Spatiotemporal range indicator S

$$S \propto \log_{10} \frac{M_{\rm env}}{I}$$

Menv Mass in the environment at steady-stateInput in tons per year

Spatiotemporal range indicator S

$$S \propto \log_{10} \frac{M_{\text{env}}}{I} = \log_{10} t_{\text{env}}$$

 $M_{\rm env}$ Mass in the environment at steady-state

Input in tons per year

t_{env} Residence time in the environment (Overall persistence)

Define system boundaries

- Define system boundaries
- Build a fate model

- Define system boundaries
- Build a fate model
- Evaluate the model

- Define system boundaries
- Build a fate model
- Evaluate the model
- Calculate the fate parameter

Mackay modelling levels

- I Equilibrium partitioning under steady state
- II As in I plus losses by advective transport and degradation
- III Nonequilibrium because of intermedia transport, steady state
- IV Same as III but unsteady state

e.g.: Mackay D et al. (1996) Environ Toxicol Chem 15:1618-1626

Spatial setups

- Local model
- Regional model
- Global model
- Nested model

Mackay I: regional, Level I

- Mackay I: regional, Level I
- EUSES: nested, Level III

- Mackay I: regional, Level I
- EUSES: nested, Level III
- Scheringers ring model: global, Level III

- Mackay I: regional, Level I
- EUSES: nested, Level III
- Scheringers ring model: global, Level III
- My antifouling model: global, Level III

- Mackay I: regional, Level I
- EUSES: nested, Level III
- Scheringers ring model: global, Level III
- My antifouling model: global, Level III
- Wanias model: global, Level IV

- Mackay I: regional, Level I
- EUSES: nested, Level III
- Scheringers ring model: global, Level III
- My antifouling model: global, Level III
- Wanias model: global, Level IV
- Scheringers chain model: global, Level IV

Fate models

provide insight

Fate models

- provide insight
- allow for the calculation of fate indicators

Fate models

- provide insight
- allow for the calculation of fate indicators
- provide information for targeted risk assessment

Fate models

- provide insight
- allow for the calculation of fate indicators
- provide information for targeted risk assessment