Error models for chemical degradation data

J. Ranke

Introduction

Results

Parent only

Conclusions

Recent improvements in the definition and identification of error models for chemical degradation data

Johannes Ranke Scientific consultant jrwb.de

Piacenza, 4 September 2019

Outline

Error models for chemical degradation data

J. Ranke

Introduction

Results Parent only Coupled fits

Conclusions

1 Introduction

Outline

Error models for chemical degradation data

J. Ranke

Introduction

Results Parent only

Conclusions

1 Introduction

2 Results

- Parent only
- Coupled fits

Outline

Error models for chemical degradation data

J. Ranke

Introduction

Results Parent only Coupled fits

Conclusions

1 Introduction

2 Results

- Parent only
- Coupled fits

Observations

Error models for chemical degradation data

J. Ranke

Introduction

Results

Caualad Ke

Conclusions

• Ordinary least squares assumes constant variance

Observations

- Error models for chemical degradation data
- J. Ranke

Introduction

- Results
- Parent only
- Conclusions

- Ordinary least squares assumes constant variance
- Metabolite residues sometimes have different variance from parent residues

Residuals over time

Does variance depend on the residue level?

Does variance depend on the observed variable?

Error models for degradation experiments

J. Ranke

Introduction

Results Parent only

Conclusions

Constant variance

Error models for degradation experiments

Error models for chemical degradation data

J. Ranke

Introduction

Results

Coupled fits

Conclusions

Constant variance

■ Variance by variable (Gao *et al.* 2011)

Gao et al. (2011) Environ Toxicol Chem 30(10) 2363-2371

Error models for degradation experiments

Error models for chemical degradation data

J. Ranke

Introduction

Results

Coupled fits

Conclusions

Constant variance

- Variance by variable (Gao *et al.* 2011)
- Variance by residue level?

Gao et al. (2011) Environ Toxicol Chem 30(10) 2363-2371

A two-component error model from analytical chemistry

Error models for chemical degradation data

J. Ranke

Introduction

Results Parent only Coupled fits

Conclusions

$$\sigma(y) = \sqrt{\sigma_{\rm low}^2 + y^2 \operatorname{rsd}_{\rm high}^2}$$

 $\begin{array}{ll} \sigma(y) & \mbox{Standard deviation of residuals as a function of the} \\ & \mbox{magnitude of the observed value} \\ \sigma_{\rm low} & \mbox{Standard deviation for small observed values} \\ & \mbox{rsd}_{\rm high} & \mbox{Relative standard deviation for large values} \end{array}$

Rocke und Lorenzato (1995) Technometrics **37**(2), 176-184 Wilson et al. (2004) Analytica Chimica Acta **509**, 197-208

How to fit the different error models

Error models for chemical degradation data

J. Ranke

Introduction

Results Parent only Coupled fits

Conclusions

OLSIRLSOtherConstant variance \checkmark -Variance by variable- \checkmark \checkmark Two-component variance- (\checkmark) \checkmark

OLS: Ordinary Least Squares IRLS: Iteratively Reweighted Least Squares Other: Direct or stepwise maximisation of the likelihood

Selection criterion for error models

Error models for chemical degradation data

J. Ranke

Introduction

Results Parent only Coupled fits

Conclusions

• FOCUS χ^2 error level assumes constant variance (which is then expressed as a relative error)

Selection criterion for error models

Error models for chemical degradation data

J. Ranke

Introduction

- Results Parent only
- Conclusions

- FOCUS χ^2 error level assumes constant variance (which is then expressed as a relative error)
- Akaike Information Criterion (AIC) depends on likelihood and number of parameters

Implementations in mkin

Error models for chemical degradation data

J. Ranke

Introduction

Results Parent only Coupled fits

Conclusions

February 2018 (mkin 0.9.47.2): Fitting the two-component error model by IRLS

July 2019 (mkin 0.9.45.5): Use more general likelihood-based algorithms

https://pkgdown.jrwb.de/mkin/news

UBA-Project 112407

Error models for chemical degradation data

J. Ranke

Introduction

Results

Parent only Coupled fits

Conclusions

Test with datasets from Risk Assessment Report (RAR) documents

■ 12 soil datasets, 11 with metabolites

UBA-Project 112407

Error models for chemical degradation data

J. Ranke

Introduction

Results

Parent only Coupled fits

Conclusions

Test with datasets from Risk Assessment Report (RAR) documents

- 12 soil datasets, 11 with metabolites
- 6 water sediment datasets without metabolites

Soil datasets - parent only

Error models for chemical degradation data

J. Ranke

Introduction

Results Parent only

Conclusions

 Constant variance and two-component error model for Simple First-Order (SFO), Dual First-Order in Parallel (DFOP) and Hockey Stick (HS)

Soil datasets - parent only

Error models for chemical degradation data

J. Ranke

Introduction

- Results Parent only
- Coupled fits
- Conclusions

- Constant variance and two-component error model for Simple First-Order (SFO), Dual First-Order in Parallel (DFOP) and Hockey Stick (HS)
- Two-component error model has lower AIC in 4 out of 12 cases

Soil 6: SFO

Soil 6: DFOP

Conclusions

Soil 10: SFO

J. Ranke

Introductio Results

Parent only Coupled fits

Soil 10: DFOP

Soil 2: Variance by variable

Soil 2: Two-component error model

Soil 4: Variance by variable

Soil 4: Two-component error model

Soil 3: Variance by variable

Soil 3: Two-component error model

Error models for chemical degradation data

J. Ranke

Introduction

Results Parent only Coupled fits

Conclusions

 For many datasets, the two-component error model provides a better representation of the error structure

Error models for chemical degradation data

J. Ranke

Introduction

Results Parent only Coupled fits

- For many datasets, the two-component error model provides a better representation of the error structure
- Metabolite rate constants, k2 values of biphasic kinetics and their p-values can become lower or higher

Error models for chemical degradation data

J. Ranke

Introduction

Results Parent only Coupled fits

- For many datasets, the two-component error model provides a better representation of the error structure
- Metabolite rate constants, k2 values of biphasic kinetics and their p-values can become lower or higher
- The variance around the initial residue level of 100% is often overestimated

Error models for chemical degradation data

J. Ranke

Introduction

Results Parent only Coupled fits

- For many datasets, the two-component error model provides a better representation of the error structure
- Metabolite rate constants, k2 values of biphasic kinetics and their p-values can become lower or higher
- The variance around the initial residue level of 100% is often overestimated

Error models for chemical degradation data

J. Ranke

Introduction

Results Parent only Coupled fits

Conclusions

- For many datasets, the two-component error model provides a better representation of the error structure
- Metabolite rate constants, k2 values of biphasic kinetics and their p-values can become lower or higher
- The variance around the initial residue level of 100% is often overestimated

Financial support and feedback by the Federal Environmental Agency is gratefully acknowledged!