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Residuals over time
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Does variance depend on the residue level?
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Constant variance

Variance by variable (Gao et al. 2011)
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A two-component error model from analytical
chemistry

σ(y) =
√

σ2
low + y2 rsd2

high

σ(y) Standard deviation of residuals as a function of the
magnitude of the observed value

σlow Standard deviation for small observed values
rsdhigh Relative standard deviation for large values

Rocke und Lorenzato (1995) Technometrics 37(2), 176-184
Wilson et al. (2004) Analytica Chimica Acta 509, 197-208
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How to fit the different error models

OLS IRLS Other
Constant variance ✓ - -
Variance by variable - ✓ ✓
Two-component variance - (✓) ✓

OLS: Ordinary Least Squares
IRLS: Iteratively Reweighted Least Squares
Other: Direct or stepwise maximisation of the likelihood
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Selection criterion for error models

FOCUS χ2 error level assumes constant variance (which is
then expressed as a relative error)

Akaike Information Criterion (AIC) depends on likelihood
and number of parameters
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Implementations in mkin

February 2018 (mkin 0.9.47.2):
Fitting the two-component error model by IRLS

July 2019 (mkin 0.9.45.5):
Use more general likelihood-based algorithms

https://pkgdown.jrwb.de/mkin/news

https://pkgdown.jrwb.de/mkin/news
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Test with datasets from Risk Assessment Report (RAR)
documents

12 soil datasets, 11 with metabolites

6 water sediment datasets without metabolites
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Simple First-Order (SFO), Dual First-Order in Parallel
(DFOP) and Hockey Stick (HS)

Two-component error model has lower AIC in 4 out of 12
cases
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Soil 6: SFO
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Soil 6: DFOP
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Soil 10: SFO
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Soil 10: DFOP
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Soil 2: Variance by variable
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Soil 2: Two-component error model
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Soil 4: Variance by variable
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Soil 4: Two-component error model

0 20 40 60 80 100 120

0
40

80
OLS

Time

O
bs

er
ve

d

●●
●●

●●

●●

●
●

●●
●● ●●

● parent
A1

0 20 40 60 80 100

0
4

8
12

AIC =  125.7

Predicted

S
qu

ar
ed

 r
es

id
ua

l

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

0 20 40 60 80 100 120

0
40

80

Two−component error model

Time

O
bs

er
ve

d

●●
●●

●●

●●

●
●

●●
●● ●●

● parent
A1

0 20 40 60 80 100

0
5

10
15

AIC =  125.4

Predicted

S
qu

ar
ed

 r
es

id
ua

l
●●

●

●

●
●

●

●

●

●

●
●

●
●

●
●



Error models
for chemical
degradation

data

J. Ranke

Introduction

Results
Parent only
Coupled fits

Conclusions

Soil 3: Variance by variable
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Soil 3: Two-component error model
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Conclusions

For many datasets, the two-component error model
provides a better representation of the error structure

Metabolite rate constants, k2 values of biphasic kinetics
and their p-values can become lower or higher
The variance around the initial residue level of 100% is
often overestimated

Financial support and feedback by the Federal Environmental
Agency is gratefully acknowledged!
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